## Synthesis of Highly Substituted Pyrroles via a Multimetal-Catalyzed Rearrangement—Condensation—Cyclization Domino Approach

2006 Vol. 8, No. 10 2151–2153

ORGANIC LETTERS

Jörg T. Binder and Stefan F. Kirsch\*

Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany stefan.kirsch@ch.tum.de

Received March 17, 2006

ABSTRACT



In a convenient one-pot process, easily accessed propargyl vinyl ethers and aromatic amines are effectively converted into tetra- and pentasubstituted 5-methylpyrroles which can further be transformed into 5-formylpyrroles via IBX-mediated oxidation. The cascade reaction proceeds through a silver(I)-catalyzed propargyl–Claisen rearrangement, an amine condensation, and a gold(I)-catalyzed 5-*exo-dig* heterocyclization.

Highly substituted pyrroles are important structural elements of many natural products<sup>1</sup> and pharmaceutically active substances (e.g., lipitor).<sup>2</sup> Moreover, they are widely used in materials science.<sup>3</sup> The construction of multiple substituted pyrrole rings typically relies on classical condensation methods such as the Paal–Knorr synthesis,<sup>4</sup> although catalytic multicomponent coupling approaches<sup>5</sup> are particularly attractive due to their rapid access to structural diversity. Despite numerous strategies for pyrrole synthesis through cyclization,<sup>6</sup> access to pentasubstituted pyrroles<sup>5e,6b</sup> is somewhat limited. In the context of ongoing efforts to develop cascade reactions initiated by transition-metal-catalyzed  $\pi$ -activation, we recently reported that acceptor substituted propargyl vinyl ethers can be effectively transformed into furans by a gold(I)-catalyzed cascade reaction.<sup>7</sup> Herein, we report a conceptually new synthetic approach to tetra- and pentasubstituted pyrroles utilizing a transition-metal-catalyzed domino reaction of a formal [3,3]-sigmatropic rearrangement, an amine condensation, and a heterocyclization. In this simple one-pot assembly,

<sup>(1) (</sup>a) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier: Oxford, UK, 1996; Vol. 2, p 119. (b) Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54. (c) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435. (d) Hoffmann, H.; Lindel, T. Synthesis 2003, 1753. (e) Fürstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582. (f) Agarwal, S.; Cämmerer, S.; Filali, S.; Fröhner, W.; Knöll, J.; Krahl, M. P.; Reddy, K. R.; Knölker, H.-J. Curr. Org. Chem. 2005, 9, 1601.

 <sup>(2) (</sup>a) Huffman, J. W. Curr. Med. Chem. 1999, 6, 705. (b) Thompson,
 R. B. FASEB J. 2001, 15, 1671.

<sup>(3) (</sup>a) Curran, D.; Grimshaw, J.; Perera, S. D. *Chem. Soc. Rev.* **1991**, 20, 391. (b) Lee, C. F.; Yang, L. M.; Hwu, T. Y.; Feng, A. S.; Tseng, J. C.; Luh, T. Y. *J. Am. Chem. Soc.* **2000**, *122*, 4992. (c) Domingo, V. M.; Aleman, C.; Brillas, E.; Julia, L. *J. Org. Chem.* **2001**, *66*, 4058.

<sup>(4) (</sup>a) Knorr, L. Ber. Dtsch. Chem. Ges. 1884, 17, 1635. (b) Paal, C. Ber. Dtsch. Chem. Ges. 1885, 18, 367.

<sup>(5)</sup> For a review, see: (a) Balme, G. Angew. Chem., Int. Ed. 2004, 43, 6238. For selected examples, see: (b) Braun, R.; Zeitler, K.; Müller, T. J. J. Org. Lett. 2001, 3, 3297. (c) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 2681. (d) Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465. (e) Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468. (f) Tejedor, D.; González-Cruz, D.; García-Tellado, F.; Marrero-Tellado, J. J.; Rodríguez, M. L. J. Am. Chem. Soc. 2004, 126, 8390. (g) Schröter, S.; Bach, T. Synlett 2005, 1957. (h) Yamamoto, Y.; Hayashi, H.; Saigoku, T.; Nishiyama, H. J. Am. Chem. Soc. 2005, 127, 10804.

<sup>(6)</sup> For recent examples, see: (a) Kim, J. T.; Kel'in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2003, 42, 98. (b) Wang, Y. L.; Zhu, S. Z. Org. Lett. 2003, 5, 745. (c) Larionov, O. V.; de Meijere, A. Angew. Chem., Int. Ed. 2005, 44, 5664. (d) Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9260. (e) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260. (f) Wurz, R. P.; Charette, A. B. Org. Lett. 2005, 7, 2313. (g) Lu, L.; Chen, G.; Ma, S. Org. Lett. 2006, 8, 835. (7) Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7, 3925.

readily obtained acceptor substituted propargyl vinyl ethers 1 and aromatic amines 2 are used as starting materials to produce pyrrole products 3 with high diversity (Scheme 1).



During the envisioned process, three independent reactions should occur sequentially: a catalytic version of a propargyl-Claisen rearrangement<sup>8,9</sup> to generate allenic ketones, a condensation with a primary amine,10 and a transition-metalcatalyzed 5-exo-dig cyclization.7 To realize a single-step process by subsequent addition of reactants and catalysts,<sup>11</sup> we first developed the silver(I)-catalyzed rearrangement route to the intermediary occurring allenylcarbonyl compounds. Treatment of propargyl vinyl ethers 1 with several silver(I) salts at room temperature produced an isomeric mixture of the corresponding allenes in a remarkably clean reaction. By far, the best catalyst was AgSbF<sub>6</sub>, which provided the rearrangement products rapidly in CH<sub>2</sub>Cl<sub>2</sub>. The reaction takes place at room temperature without the formation of significant amounts of any byproducts. Of primary importance, the corresponding furans7 were not seen by 1H NMR analysis of crude reaction mixtures. Low catalyst loadings (1-5 mol)%) are sufficient to effect rearrangement in almost quantitative yield.

As the next step, we attempted to combine the Ag(I)catalyzed propargyl-Claisen rearrangement with condensation and heterocyclization.<sup>12</sup> After formation of the corresponding allenylcarbonyl compound from propargyl vinyl ether **1a** (R<sup>1</sup> = Ph, R<sup>2</sup> = Me, R<sup>3</sup> = H, Y = OEt), using 5 mol % of AgSbF<sub>6</sub> in CH<sub>2</sub>Cl<sub>2</sub>, 1.5 equiv of aniline was added directly to the reaction mixture followed by 5 mol % of (PPh<sub>3</sub>)AuCl to provide pyrrole **3aa** in 71% yield after 30 min at 38 °C (Table 1, entry 1).<sup>13,14</sup> The Au(I)-catalyzed cyclization was

## Table 1. Survey of Amines for Pyrrole Synthesis<sup>a</sup>

| $\begin{array}{c} \begin{array}{c} \text{Ph} & \text{1) } \text{AgSbF}_{6} (5 \text{ mol } \%), 23 \ ^{\circ}\text{C} \\ \text{2) } \text{R}^{4} - \text{NH}_{2} (2) \\ \text{3) } (\text{Ph}_{3}\text{P})\text{AuCl } (5 \text{ mol } \%), 38 \ ^{\circ}\text{C} \\ \text{CH}_{2}\text{CI}_{2} \\ \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \text{N} \\ \text{Me} \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \text{Me} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \text{Me} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \text{Me} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \text{Me} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{R}^{2} \\ \text{Me} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{R}^{2} \\ \text{Me} \\ \begin{array}{c} \text{R}^{2} \\ \text{Me} \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \text{Me} \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \text{R}^{2} \\ \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{2} \\ \ \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{2} \\ \text{R}^{2} \end{array} \\ \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{2} \\ \ \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{2} \end{array} $ |                                       |    |                         |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----|-------------------------|------------------------|
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $R^4$                                 | 3  | time [min] <sup>b</sup> | yield [%] <sup>c</sup> |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ph                                    | aa | 30                      | 71                     |
| 2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p-MeO(C <sub>6</sub> H <sub>4</sub> ) | ab | 60                      | 75                     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p-i\Pr(C_6H_4)$                      | ac | 60                      | 73                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p-HO(C_6H_4)$                        | ad | 120                     | 41                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p-Br(C <sub>6</sub> H <sub>4</sub> )  | ae | 75                      | 74                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $m-Cl(C_6H_4)$                        | af | 60                      | 83                     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o-iPr(C <sub>6</sub> H <sub>4</sub> ) | ag | 60                      | 67                     |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $m-O_2N(C_6H_4)$                      | ah | 120                     | 55                     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MeO <sub>2</sub> C                    | ai | 60                      | 52                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-naphthyl<br>Ph <sup>EtQ</sup>       | aj | 30                      | 72                     |
| 11 <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | ak | 105                     | 31                     |

<sup>*a*</sup> Conditions: (1) 0.2 mmol of **1a**, 5 mol % of AgSbF<sub>6</sub>, 23 °C, CH<sub>2</sub>Cl<sub>2</sub> (0.4 M), 30 min; (2) R<sup>4</sup>-NH<sub>2</sub> (1.5 equiv), 23 °C; (3) 5 mol % (PPh<sub>3</sub>)AuCl, 38 °C. <sup>*b*</sup> Reaction time for the cyclization (step 3). <sup>*c*</sup> Yield of pure product after column chromatography. <sup>*d*</sup> Reaction of **1a** with 0.5 equiv of 1,4-phenylenediamine (**2k**).

slowed markedly when carried out at room temperature. In the absence of the catalyst, pyrrole formation was not observed under these conditions. While (PPh<sub>3</sub>)AuCl was unreactive, the presence of AgSbF<sub>6</sub> in the reaction mixture led to activation of the Au(I) catalyst by changing the counterion from chloride to hexafluoroantimonate. With optimized reaction conditions in hand [(1) substrate **1**, 5 mol % of AgSbF<sub>6</sub>, 23 °C, 30 min, CH<sub>2</sub>Cl<sub>2</sub> (0.4 M); (2) R<sup>4</sup>-NH<sub>2</sub>, 23 °C; (3) 5 mol % of (PPh<sub>3</sub>)AuCl, 38 °C], pentasubstituted pyrroles **3a** were formed in a one-pot reaction in good yields from propargyl vinyl ether **1a** with R<sup>4</sup> being aryl and heteroaryl substituents (Table 1).<sup>15</sup> Unfortunately, reaction with aliphatic amines (R<sup>4</sup> = Me, *i*Pr, Bn) did not provide the corresponding pyrroles.

The scope of this domino approach to substituted pyrroles is summarized in Table 2. A broad variety of propargyl vinyl ethers **1** with different substituents  $R^1$  and  $R^2$  was effectively converted into the corresponding pyrroles. The reaction tolerated substitution of the substrate with  $R^1$  and  $R^2$  being both phenyl and alkyl groups.

<sup>(8)</sup> Overman, L. E. Angew. Chem., Int. Ed. Engl. 1984, 23, 579.

<sup>(9)</sup> For a single example of a Ag(I)-catalyzed rearrangement, see: (a) Grissom, J. W.; Klingberg, D.; Huang, D.; Slattery, B. J. J. Org. Chem. 1997, 62, 603. For a single example of a Au(I)-catalyzed rearrangement, see: (b) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978. (10) Arcadi, A.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.

<sup>(11)</sup> By performing these steps simultaneously, treatment of a preformed mixture of 1 and 2 with a variety of transition-metal complexes gave only traces of the desired pyrroles 3 (<5% yield).

<sup>(12)</sup> For reviews on the cyclization of allenes, see: (a) Bates, R. W.; Satcharoen, V. *Chem. Soc. Rev.* **2002**, *31*, 12. (b) Hashmi, A. S. K. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.: Wiley-VCH: Weinheim, Germany, 2004; p 877.

<sup>(13)</sup> For reviews on gold catalysis, see: (a) Hashmi, A. S. K. Gold Bull.
2003, 36, 3. (b) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. (c) Hoffmann-Röder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. (d) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 42, 6990.

<sup>(14)</sup> For selected examples on gold-catalyzed cyclizations of allenes, see: (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285. (b) Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121.

<sup>(15)</sup> General Procedure. Synthesis of **3af**: AgSbF<sub>6</sub> (3.4 mg, 5 mol %) was added to a solution of 1a (50 mg, 0.20 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL), and the reaction vial was sealed, protected from light, and stirred at room temperature for 10 min. Then, 3-chloroaniline (39.2 mg, 0.31 mmol, 1.5 equiv) and (Ph\_3P)AuCl (5.1 mg, 5 mol %) were added subsequently. The dark reaction mixture was stirred at 38  $^\circ C$  for 1 h (until TLC analysis indicated complete conversion). The mixture was concentrated under reduced pressure. Purification of the residue by flash chromatography on neutral  $Al_2O_3$  (P/EtOAc = 98/2) gave pyrrole **3af** as a colorless solid (59.0 mg, 0.17 mmol, 83%).  $R_f 0.73$  (P/EtOAc = 80/20); <sup>1</sup>H NMR (360 MHz, CDCl<sub>3</sub>)  $\delta$  1.04 (t, J = 7.2 Hz, 3 H), 2.01 (s, 3 H), 2.31 (s, 3 H), 4.08 (q, J = 7.2Hz, 2 H), 6.88–6.90 (m, 1 H), 7.05–7.06 (m, 1 H), 7.09–7.12 (m, 2 H), 7.15-7.24 (m, 5 H); <sup>13</sup>C NMR (90.6 MHz, CDCl<sub>3</sub>) δ 10.7, 11.1, 14.1, 59.4, 113.4, 117.2, 127.1, 127.2, 127.5, 127.6, 128.2, 129.1, 129.8, 131.2, 132.5, 134.4, 137.9, 139.6, 165.8; IR (cm<sup>-1</sup>) 2924 (m), 1700 (vs), 1592 (m), 1481 (s), 1380 (m), 1259 (m), 1147 (s), 1069 (m); LRMS (EI) 353 (100%) [M<sup>+</sup>], 324 (26%), 308 (26%), 280 (8%), 244 (15%), 152 (12%); HRMS 353.1182 [353.1183 calcd for C<sub>21</sub>H<sub>20</sub>NO<sub>2</sub>Cl (M<sup>+</sup>)].





<sup>*a*</sup> Conditions: (1) 0.2 mmol of **1**, 5 mol % of AgSbF<sub>6</sub>, 23 °C, CH<sub>2</sub>Cl<sub>2</sub> (0.4 M), 30 min; (2) R<sup>4</sup>-NH<sub>2</sub> (1.5 equiv), 23 °C; (3) 5 mol % (PPh<sub>3</sub>)AuCl, 38 °C, 30–240 min. <sup>*b*</sup> Yield of pure product after column chromatography. <sup>*c*</sup> The methyl ester was used. <sup>*d*</sup> With 1.3 mmol of **1e**.

Unfortunately, only pyrroles in which the 5-position bears a methyl group ( $\mathbb{R}^3 = \mathrm{H}$ ) are easily accessible. Although substrate **1k** derived from a secondary propargyl alcohol reacted to pyrrol **3ka** ( $\mathbb{R}^3 = \mathrm{Me}$ ) in 38% yield (eq 1), flexibility at this position remains limited. Surprisingly, the reaction of substrates with  $\mathbb{R}^3 = \mathrm{Et}$  and  $\mathbb{R}^3 = \mathrm{Ph}$  failed to give pyrrole formation, providing instead six-membered heterocycles **4** in moderate yields through 6-*endo* cyclization of the condensation products (eq 2).



The method described above is particularly attractive for assembling 5-methylpyrrole-3-carboxylates **3**, as subsequent functionalization of the methyl group in the 5-position has the potential to access further synthetic applications. Examples to modify the C5-Me include halogenations, alkylations, and Mannich reactions as well as partially practical oxidations to aldehydes.<sup>16</sup> Gratifyingly, we found that 2-iodoxybenzoic acid (IBX)<sup>17</sup> is an excellent reagent for the selective oxidation<sup>18</sup> to generate synthetically useful 5-formyl-pyrroles. Though the IBX oxidation of benzylic positions has been intensively studied with aromatic systems,<sup>18c</sup> the method is not well established for heteroaromatic systems. For example, oxidation of the 5-methylpyrroles **3ea**, **3ha**, **3af**, and **3gj** with 4 equiv of IBX in DMSO at 110 °C produced the corresponding aldehydes **5** (eq 3).



In summary, a new and simple method for the synthesis of pentasubstituted *N*-aryl pyrroles has been described. The use of acceptor substituted propargyl vinyl ethers as starting materials is particularly convenient as these intermediates can be prepared in high yield by simple PMe<sub>3</sub>-catalyzed addition of propargyl alcohols to 2-propynoic acid derivatives.<sup>19</sup> The overall process is useful to generate pharmaceutically interesting pyrroles rapidly and with high diversity. Moreover, the products of the domino reaction can easily be transformed into valuable 5-formylpyrroles by IBX oxidation. We anticipate applications of this concept for the synthesis of further five-membered heterocycles, and applications in total synthesis are currently underway.

Acknowledgment. This project was supported by the Bundesministerium für Bildung und Forschung, the Fonds der Chemischen Industrie, and the Deutsche Forschungsgemeinschaft.

**Supporting Information Available:** Representative experimental procedures for catalytic pyrrole formation, and copies of <sup>1</sup>H and <sup>13</sup>C NMR of **3** and **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

## OL060664Z

(19) Inanaga, J.; Baba, Y.; Hanamoto, T. Chem. Lett. 1993, 241.

<sup>(16)</sup> For reactions of 5-methylpyrroles, see inter alia: (a) Moranta, C.; Pujol, M. D.; Molins-Pujol, A. M.; Bonal, J. *Synthesis* **1999**, 447. (b) Curulli, A.; Sleiter, G. *J. Org. Chem.* **1985**, *50*, 4925. (c) Thyrann, T.; Lightner, D. A. *Tetrahedron Lett.* **1995**, *36*, 4345.

<sup>(17) (</sup>a) Hartmann, C.; Meyer, V. Ber. Dtsch. Chem. Ges. 1893, 26, 1727.
(b) Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537.

<sup>(18) (</sup>a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523. (b) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656. (c) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. J. Am. Chem. Soc. 2002, 124, 2245.